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NOMENCLATURE

A Missile reference area, cm2 .

CQ Total missile roll moment coefficient.

Cv Static roll driving moment coefficient.

CQ P Linear roll damping moment coefficient.

CQ4 Induced roll moment coefficient.

(Cj + iCj) Complex transverse aerodynamic moment expressed in the non-rolling frame.

Cm(7,) Roll-orientation-dependent restoring moment coefficient.

Cmr Restoring moment coefficient derivative.

Cm% Unmodulated restoring moment coefficient derivative.

(Cmq + Cm.) Pitch damping coefficient derivative.

Cm , Cm62, C MY Coefficients of the roll orientation-dependent static moment expansion.

Cmp1 Linear magnus moment coefficient derivative.

CN(y) Roll orientation-dependent normal force coefficient.

CN% Unmodulated normal force coefficient derivative.

CN-,6 CN3,b4 Coefficients of the roll orientation-dependent normal force expansion.

CSN(y) Roll orientation dependent side-force coefficient.

C m (y) Roll orientation-dependent side-moment coefficient.

Csm (t) Roll orientation-dependent side-moment coefficient derivative.

Csm. Linear, roll orientation-dependent side-moment coefficient derivative.

(C7 + iCy) Complex transverse force coefficient expressed in the non-rolling frame.

d Missile reference diameter, cm.
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H CN.o - kj 2 (C, + C*j,).

I x , ly Missile polar and transverse moments of inertia, Kgm-m 2 .

KI, K2  Nutation and precession modal vectors.

Klo, K2. Initial values of the nutation and precession modal vectors.

ka  Missile axial radius of gyration.

kt  Missile transverse radius of gyration.

kl, k2  Nutation and precession modal amplitudes.

m Missile mass, kg.

P V ")

p Roll rate, rad/sec.

p pd/V.

(p, q, ) Missile angular velocity expressed in non-rolling frame.

Pss Steady-state roll rate.

q_ Dynamic pressure, 1/2pV 2.

R -k-2C .

R R/(w I - W2).-

S k- Csm(3).

t -M
S C~6 (4 xy_1).

s Nondimensional arclength.

T CN + ka 2 Cm*

To  Fast time scale.

T2 , T4  Slow time scales.

t Time, sec.
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(u, , ,) Missile velocity vector expressed in the non-rolling frame.

V Magnitude of the missile velocity, m/sec.

(x, y, z) Inertial frame coordinates.

(X, Y, Z,) Missile-fixed coordinate frame.

(X, Y, Z,) Missile non-rolling coordinate frame.

GREEK SYMBOLS

aT Total angle of attack.

y Cross flow orientation relative to cruciform.

u/V.

8 Magnitude of the complex angle of attack.

e Smallness parameter.

01,02 Nutation and precession mode slowly varying phase.

X Detuning parameter.

Complex transverse angular velocity expressed in the non-rolling frame.

Complex angle of attack expressed in the missile-fixed frame.

Complex angle of attack expressed in the non-rolling frame.

p Air density kgm/m 3 .

Missile roll orientation.

Missile initial roll orientation.

Vj(s)  Total phase of the planar motion amplitude.

j Total phase of the jth modal amplitude, k .

7 0 + 0j

w Frequency of jt" modal amplitude kj.

wj1  dwj/dT2.
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MATHEMATICAL NOTATION

( )' Denotes differentiation with respect to non-dimensional arclength.

) Denotes differentiation with respect to time.

( ) Denotes matrix.

(~) Denotes quantities expressed in the non-rolling frame.

( ) Denotes the complex conjugate.

I I Denotes the magnitude of a complex or vector quantity.

Im Imaginary part.

Re Real part.

viii



CHAPTER 1

INTRODUCTION

The angular motion of a finned missile has long been the subject of extensive experimental and analytical
investigations. Much of this work has been a part of the normal aerodynamic design phases of both guided and
unguided missiles. However, all too often, the more serious and ambitious of these investigations are undertaken as
a direct result of unexpected flight failures, at the expense of time and resources already invested in the design. In
hindsight, these flight instabilities are often found to arise from fundamental inadequacies in the missile design or
failure on the part of the designer to recognize an important mechanism of aerodynamic coupling.

One of the most severe types of flight instabilities encountered in the free flight of a finned missile is described
by large-amplitude angular motion when the missile rolling velocity is in the vicinity of the missile natural frequency
(fundamental resonance). This undesirable behavior has been shown to arise as a result of the aerodynamic coupling

which exists between the vehicle axial and transverse aerodynamics. This so-called "roll-yaw coupling" has been
responsible for the anomalous behavior of several contemporary configurations and, in some instances, has resulted
in unacceptable dispersion levels so as to severely degrade weapon effectiveness.

In spite of the vast amount of literature available on the subject, a complete and thorough understanding of
the phenomenon has successfully eluded the flight dynamicist for many years. While there have been significant
contributions made in recent years1- 7 in the form of partial solutions, the problem to date, in three degrees of
freedom, remains unsolved.

While previous works have treated the possibility of missile resonant behavior in the vicinity of fundamental
resonance, they have all had one basic assumption in common: the existence of a small configurational asymmetry,
which acts as a harmonic forcing function and is the cause of the subsequent resonant behavio|.

If one considers the resonance phenomenon in a somewhat more general light, it seems plausible that the
inherent lack of complete axial symmetry introduced by the presence of the fins has the potential for introducing
resonant behavior. Missile transient reponse, in the presence of roll-orientation-dependent aerodynamics. at a
number of critical rolling velocities, is precisely the subject of this report, By an analysis of the yawing motion.
with the rolling motion known a priori and vice versa, an understanding of coupling mechanisms introduced by the
Toll-dependent aerodynamics may be gained.

The general case of the angular motion of a symmetric missile having nonlinear roll orientation-dependent
aerodynamics, cubic in angle of attack, and constant roll rate is treated via the method of multiple scales. Using
the resulting first-approximate solution, missile transient response is investigated and three critical roll rates are
identified at zero spin, resonance, and one-half res(.nant spin. Plane autonomous system theory is used to exhibit
the nature of the motion and its dependence on initial conditions.

The induced rolling motion of a cruciform missile with a-priori yawing motion is then studied, using a gener-
alized version of the method of multiple-time scaling to obtain the conditions for roll entrainment. Solutions are
shown to be singular at zero spin, resonance, and one-half resonant spin;and additional solutions valid in the vicinity
of these roll rates are generated.

Finally, the full nonlinear problem of combined pitch-yaw-roll motion, with roll orientation-dependent axial
and transverse aerodynamics, is studied, with no a priori assumptions regarding the motion. Cri.,cal roll rates are
identified and useful stability criteria are derived.



CHAPTER II

EQUATIONS OF MOTION AND AERODYNAMIC MOMENT EXPANSIONS

A. EQUATIONS OF TRANSVERSE ANGULAR MOTION

In order to introduce the subject and gain insight into the problem, the equations of motion of a rigid, cruci-
form, free-flight missile having both aerodynamic and inertial symmetry are presented. In the work that follows,
use will be made of three frames of reference: an inertial frame, a missile-fixed system, and the "aeroballistic" or
nonrolling system.

The (x, y, z) coordinate system of Figure 1 is an inertial frame, with freestream velocity V directed along the
x-direction. The missile-fixed frame (X, Y, Z) is an orthogonal system, rigidly attached to the missile, with the
X-axis along the longitudinal axis of symmetry, the Y-axis containing a fin, and the Z-axis completing the triad.
It is convenient to express the equations of motion in terms of dynamical quantities defined in the "aeroballistic"
system, (X, Y, Z), which is allowed to pitch and yaw with the missile but does not roll. Transformation of vector
quantities between the missile-fixed and nonrolling systems is then completely specified by a rotation about the

missile X-axis through the roll angle $ defined by

, = fpdt (2.1)

where p is the missile roll rate and t, time.

Many excellent developments of the equations of motion of a symmetric missile can be found in the literature
and for the sake of brevity will not be repeated here. Instead, the non-enclature and results of Reference 8 will be
used in writing the equations of angular motion in the nonrolling coordinate system in terms of the translational
(u, V, v) and rotational (p, 4, T) velocity components expressed in that frame. From Reference 8 the exact
equations of missile angular motion, with constrained center of gravity may be written*

- i = C! + iC* (2.2)
y z

- iPj kt 2(C* + iC*) (2.3)

where the complex angle of attack, , and the complex angular velocity, /, are given by

+ i(2.4)

V( + i' )d

*Assumptions of constart velocity and the omission of gravity are implicit in the use of Equations (2.2) and (2.3).
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Figure 1. - Coordinate Systems

= u/V (2.6)

pd 1.
P V (2.7)

and

o 2 d2  (2.8)t - ly

In compliance with the methods of Reference 8, the independent variable t has been replaced by the nondimensional
arclength, s, defined by

... S ¢ -- dt (2,9)

with ( )' denoting differentiation with respect to s. The complex moment coefficient in the nonrolling frame
(C; + iCW) has been multiplied by the density factor (pAd/2m)

3
5,.

... ~~-'-,--.-



(c -+ -C! 2m (% +(iC_ ). (2.10)

Now for small angles of attack, the quantity, -/, is essentially constant at a value of unity since

where 8 represents the magnitude of t. Therefore, if attention is restricted to small-amplitude motion, the effect of
the geometrical nonlinearities j and 1'/ may be approximated by 8

(2.12)

and
0 / =O (2.13)

With the elimination of these geometrical nonlinearities, the only task remaining is a specification of the functional
form of the aerodynamics.

B. AERODYNAMIC FORCE AND MOMENT EXPANSIONS

In the case of a cruciform missile, the static restoring moment is not only a function of the angle of attack
but is also dependent on the orientation of the plane of the angle of attack relative to the cruciform, as shown
in Figure 2. Experimentally, this modulation of the static restoring moment with roll angle is observed to be quite
small, for most low-aspect-ratio missile configurations. 9 - 11 Typical variations of static restoring moment with roll
orientation are shown plotted in Figures 3 and 4.

V 1

V

Y, Z - MISSILE-FIXED
Z Z V, Z - NON-ROLLING

AFT LOOKING FORWARD
Figure 2. Rotl-IOientation-Dependent Aerodynamics
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In addition to static moment variations, experiment has also shown the existence of a roll-orientation-dependent
side moment and its corresponding side force. This "induced" side moment is caused by the lack of complete axial
symmetry introduced by the presence of the fins. Thus, when the cross-flow vector impinges on an asymmetric
body cross section, at specific roll orientation angles a side-moment arising from this asymmetric pressure distribu-
tion results. For typical low-aspect-ratio configurations, wind tunnel tests have shown these side forces and moments
to be reasonably approximated by harmonic functions of the roll orientation angle, .11 Typical variations of side-
force and side-moment with roll orientation are shown in Figures 3 and 4.

Given some rather basic assumptions concerning the origin of the fluid forces acting on a missile possessing
n-gonal symmetry, Maple and Synge 12 have shown that simple rotational and reflectional symmetry considerations
can sometimes place unexpected restrictions on the functional form of the missile aerodynamic force and moment
system.

The basic hypotheses of the theory are twofold. The first is the aerodynamic hypothesis; 13 i.e., the aerody-
namic forces and moments acting on the missile are completely specified by the instantaneous translational and
rotational velocity of the missile relative to the fluid. The second is the assumption that these forces and moments
may be represented by a power series expansion in the transverse translational and angular velocity components of
the missile. In recent years, the validity of the aerodynamic hypothesis has come under scrutiny, and in some

3.2
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I I I

20 40 60 80
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0.4-ii
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-0.4 M =0.6

0 20 40 60 80
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0.4-- 0 0 °

CSN(1Y) 0.0 * 1

-0.4- F M =0.6

20 40 60 80
ROLL ANGLE (deg)

Figure 3.-Typical Restoring Moment and Side Moment Variationswith Roll Angle (References 10 and 11)
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Figure 4.- Typical Normal Force and Side Force Variations with
Roll Angle (References 10 and 11)

instances, modifications to the theory have been proposed. Considerations of such mechanisms as nose-generated
vorticity and its interaction with the aft body have suggested the possible inclusion of terms that would reflect the
recent history of the flow as well as its present state. Nevertheless, over the years, the theory has essentially remained
intact, providing the mathematical framework for the basic aerodynamic force and moment expansion.

Only the basic results of the theory are presented herein. A development of the static, roll-orientation-
dependent force and moment expansions may be found in the appendix. For a general treatment of the subject, the
reader is referred to the original work of Maple and Synge, 12 as well as a somewhat abridged version by Zaroodny.14

The essence of the method is embodied in the observance of the aerodynamic force and moment expansion
under coordinate transformation, The physical reasoning of these operations may be summarized as:

a. The aerodynamic force and moment expansion, in the nonrolling system, must remain invariant under roll
transformations through an angle 21r/N, where N is the number of planes of rotational symmetry (fins).

b. The aerodynamic force ard moment expansions are "antisymmetric" under a reflection of the coordinate
system about a plane containing a fin (cruciform missile).

6
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If these operations are performed for a cruciform missile and attention is restricted to the static-roll-
orientation-dependent terms of the first harmonic in 4 , the following force and moment contributions (to fifth
order in 6) result:

(C + iC ) = No + CN - 262e-iy + CNY 464e i4
,y + . (2.14)

and

( + C = ilCm Cm262e-i4/ + Cm 4 54 ei4 y + . .J . (2.15)

Equations (2.14) and (2.15) offer a considerable amount of information concerning the form of the roll-orientation-
dependent aerodynamics of a symmetric cruciform missile.

First, it can be seen that the terms linear in angle of attack are free of any -,-dependence. From this fact, it
fo'lows that the effects of roll orientation must be limited to terms cubic in the angle of attack and higher. Terms
of lower order in 5 are incapable of discerning the presence of the fins. Secondly, if Equations (2.14) and (2.15) are
expanded into real and imaginary parts, it is seen that for expansions third order in 6 and lower, the "in-plane" and
"out-of-plane" components due to roll orientation must be equal. For example, the in-plane component of
Equation (2.15) is given by

Cmin-plan e = -CMo6 + Cm.Y,263 Cos 4-t + Cm_,6465 Cos 4Y + ... (2.16)

while tne out-of-plane component may be written

Cmout-o(Ptan e = - Cm162 63 Sin 4,y - Cm S64 5 Sin 4, + • (2.17)

It is easily seen that descriptions of the roll orientation-dependent static moment, up to third order in 6, must have
the side moment and modulation component of the restoring moment equal in magnitude.

In the study of roll orientation-dependent forces and moments that follows, terms up to third order in 6 and
harmonic in 4,y will be retained.

With the static-roll-orientation-dependent forces and moments defined, inclusion of aerodynamic damping
(Cmq + Cm), and a linear magnus moment, Cmp., results in the total aerodynamic force and moment system to
be considered.

(Cc+ic) [ + 2 e A (2.18)

(C +iC)[ - ic  ° +- iC' 2
2e-i4-1 + C - 'm 6 ' + Cq* (2.19)

Incorporation of Equations (2.18) and (2.19' into the equations of motion with the assumptions of constant
velocity, small geometrical angles ( = 1), and the omission of gravity terms8 yields a second-order differential
equation in the complex angle of attack

+ (H - iP)i' - (M + iPT)j = (R + iPS)62e-i4"yj + 3C,* 26 2e 4 ()'/ (2.20)

7



where

IH = CNao- (C*mq + 1n,,)k 2  (2.21)

M = k-2 C*  (2.22)

T=C* + k- 2C* (2.23)

R--kt2Cm (2.24)

and

• 
4 y

-- CN6 2 [ -- 1 (2.25)

The axial and transverse radii of gyration are denoted by ka and kt respectively, and () denotes the complex
conjugate. Note that the right-hand side of Equation (2.20) is composed of both lift and moment terms which are
nonlinear in angle of attack. These nonlinearities are partially a result of the complex exponential e- 4 , as well as
the nonlinear angle of attack dependence, as expressed in the Maple-Synge expansion.

C. DYNAMICS AND AERODYNAMICS OF ROLLING MOTION

The equation of rolling motion of a symmetric missile is also taken from Reference 8 and may be written
simply as

Ixip = q_*AdCQ (2.26)

where Cq is the total aerodynamic roll moment coefficient, which, for the purpose of the present analysis, is taken
as the sum of a linear damping and a static aerodynamic roll moment, Cs.

CQ = CQ pd + CQ (2.27)

Now if the Maple-Synge symmetry arguments are applied in the case of the roll aerodynamics of a cruciform
missile, it may be shown that the static roll moment terms must take the form (see the appendix)

Cs = Q C0 , 2 t + 84N 62 ,BN2 Sin 4N 7  (2.28)
2=0 N=1 0

While this particular expansion is based on tetragonal symmetry, it does not require missile reflectional symmetry
and hence can be used to account for fin misalignment.

Now if Equation (2.28) is expanded for the lowest-order terms (Q = 0) and terms quintic in angle of attack and
higher are omitted, it may be incorporated into Equation (2.26) to yield the differential equation of rolling motion
to be considered



I ~ 0 V dTY 64 . ~ i4y .. (2.29)

where the coefficients in the formal Maple-Synge expansion have been replaced with the more familiar V
(roll driving), and C,~ (induced roll). It should be noted that while Equation (2.29) contains the lowest-order
terms which describe te induced roll moment, the 62, 64~ dependence of the roll driving moment coefficient has
been omitted, since these terms display no roll orientation dependence. Hence their retention was not considered
essential in the present study of induced rolling motion.

Typical induced rolling moment coefficient behavior with roll angle is shown plotted in Figure 5 together with
yaw moment coefficient data taken on a cruciform missile configuration at subsonic Mach numbers. Also shown
plotted are the analytical approximations to the data which resulted from a least-squares fit with the Maple-Synge
functional form.

9
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CHAPTER III

ANGULAR MOTION WITH PRESCRIBED ROLLING MOTION

A. NONRESONANT SOLUTIONS

The full nonlinear problem of pitch, yaw, and rolling motion, in the presence of roll orientation-dependent
aerodynamics is the ultimate objective of this analysis. However, it will be instructive in what follows to partially
decouple the motion by considering the transverse angular motion with the rolling motion prescribed a priori. While
this is not representative of the free-flight condition, it hopefully will exhibit the effects of the roll-dependent forces
and moments on missile stability and provide insight that will be useful in the solution of the full coupled problem.

In this chapter a solution is sought to the differential equations of yawing motion, in the presence of roll
orientation-dependent aerodynamics, where the roll rate is, at most, slowly varying in comparison with the frequency
of the yawing motion.

An inspection of the nonlinear roll-dependent terms on the right-hand side of Equation (2.20) reveals that the
imaginary part of the coefficient R + iPS., is quite small in comparison with R for roll rates characteristic of a finned
missile, and hence may be approximated by the real part only. In like manner, it can be shown* that the lift term
containing CN.2 is several orders of magnitude smaller than the moment term and will therefore be neglected.

In the development of the approximate solutions which follow it will be instructive and more physically
meaningful to change the independent variable of Equation (2.20) from arclength to time which is easily accom-
plished through the use of Equation (2.9) and the assumption of constant velocity. With the above approximations
in mind, Equation (2.20) may be rearranged and written in the time domain as

-iPo - o = e2 + i +2
2 + e-i4

where

P0 = pI'Iy,

2 = MV2/d 2

e2 p, = -HV/d
(3.1)

C242 = PoTV/d

xl = RV 2/d 2

52 =

*The term t /t is proportional to the frequency of the yawing motion which for normal epicyclic motion is usually on the order of
10-3 rad/cal.

I1



and e is a small dimensionless quantity of order 6 which has been introduced into the linear damping and
magnus terms such that the forcing terms to the unperturbed differential equation are of order 63.

In order to obtain an approximate solution to Equation (25) with roll-dependent aerodynamics and constant
spin via the method of multiple scales, two independent time scales To and T2 are introduced such that

t = To + e2 T2  (3.2)

Here the fast time scale To is associated with the yawing motion, while the slow time scale T2 is associated with
quantities changing slowly along the trajectory such as dynamic pressure, aerodynamic coefficients, etc. Thus,
derivatives with respect to time t, are transformed to partial derivatives according to

d _ a 2 a (3.3)
dt aT0 + T2

A solution to Equation (3.1) is sought in the form of an asymptotic expansion in the smallness parameter e of
the form:

(t) = e 1(T0 ,T 2) + e3
3(T0 ,T 2 ) + ... (3.4)

which remains uniformly valid. This is equivalent to the condition that 3/tl remains bounded for all To and T2.
The introduction of the smallness parameter e, into the equations of motion and the assumed form of the
asymptotic expansion for i(t) may, at first, seem somewhat arbitrary. However, a successful application of the
method of multiple scales transforms the nonlinear differential Equation (3.1) to a sequence of linear partial dif-
ferential equations in the qt).

Substituting Equation (3.4) into Equation (3. 1) while making use of Equation (3.3) and equating equal powers
of E one obtains

2 a~l - 2W 1 = 0 (3.5)

a 2i 3  a13  -2a 2 - a 1  1  34
T iP 0 i 0T 2 + iPO L + MI + iL 2  + XI( I) e (3.6)

The general solution to Equation (3.5) is the usual epicyclic solution

tI(T 0 , T2 ) = KI(T 2 )e 1nT0 + K2 (T2 )e 2T0 (3.7)

where wo and w2 are the nutation and precession frequencies respectively, given by

-1,2 = (P0  4 • (3.8)

12



Having obtained a solution to Equation (3.5), Equation (3.7) may be substituted into Equation (3.6) to obtain

a2  
h  62 'we~~

a-_ ip0  10 + w2e iW2To

+xlei4¢oK3ei(4p-3w)To + 2K2Kip - 2)To

i7o2 i(4p-3w)T 2K2ei(4p-2w -2)T+X2e e  + 2I2
3+ f( 2  i(4 P-2w1 w2)To

+2K i2ei( 4p- w1 -2w 2)To + -32(4p3w 2 o(+2R1 2 K~ei(3.9)

where

w = i(P0 -2w 1) dK + iilKlw1w + ip 2K1  (3.10)

and

dK 2= i(P0 - 2w 2 ) - -2 + iy 1K2 w2 + i# 2K2  (3.11)

Implicit in Equation (3.9) is the assumption of constant spin such that

0 = 00 + PT0  (3.12)

Now particular sohtions to Equation (3.9) contain secular terms of the form Toei jT° , which, as To becomes
large, cause f3/' to become unbounded. Therefore, to obtain a uniformly valid expansion, the Kj are chosen such

that the secular terms vanish, i.e., wj = 0. The complex modal vectors, Kj may be represented by their respective
amplitude and phase and substituted into Equations (3.10) and (3.11) while separating real and imaginary parts to
obtain the modal damping and phase differential equations:

dkl ( 1w1l +u 2 )d -j P 0 2) (3.13)dT2 PO - 2w,1

dk2  (#1co2 + 2 )

dT2  PO - 2w 2

dOt  d02

- = 0 (3.15)SdT 2  dT2

where

Kj- kje i' j  (3.16)
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With the secular terms removed, Equation (3.9) may now be solved for t3 to obtain

VeiIT ~ et210 kK,e iV3To ___________I Ai + 3 R ~I 4O } (3.17)

2 03 2' 0 4 3 ~'

where

V, 4 p- 3 w't

vj 4 'p- 3w,
(3.18)

V3  4p- 2 w,) -J

V4  
4 p- wl~ 2w 2

Thus the complete solution (T0 , T2) UP to order e3 may be written

t(T 0 , 2 ) ce iw~I T 0 + eK2 e iW2TO - E3 XI_____

L2 - pi+ w

K~eiv2To 3R2fK 2e iV3To 3k 12e4T
+ 2 + -12(3.19)

V2  ~P+ w2  2~-~ 3 w 2 2~v + W2 - ~v2 0 V3 P~v + JO v - ON J
Equations (3.13) through (3.15) indicate that to a first approximation, for nonresonant motion, the behavior

of the modal amplitudes is unaffected by the presence of the roll-orientation-dependent aerodynamics.* Figure 6
shows a comparison between solutions generated with Equation (3.19) and a direct numerical solution of
Equation (3.1).

10.0 75.0

p=0 -EXACT
p=, . 0 -EXACT

CN =*APPROXIMATE CN,4 0.0 *APPROXIMATE

5.0 C" 6. Cm =0.0

k,00750.0 k,=0.077
k 20 0.013 /~ = ~ 0.013

0.0.

525.

10. 00.0

NIV) (deg) Time I- sec)

Figure 6. - Comparison of Approximate and Exact Solutions: Nonresonant Spin

Identical results may also be generated, using the method of averaging. (Reference 15)
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Missile aerodynamic and inertial characteristics used in the calculations may be found in Table 1.

It should be noted that Equation (3.19) becomes singular when vj = wl,2.A close inspection of possible
singular roll rates reveals that Equation (3.19) ceases to be valid at zero spin, p = w, and approximately one-half
resonant spin p - (3w 1 + w2)/4. At these roll rates, vj approaches either w 1 or w 2 , which introduces additional
secular terms into Equation (3.9) which were previously not taken into account.

B. RESONANT SPIN

Solutions which are valid at resonant spin may be generated by a consideration of Equation (3.9) with v1 =w

to obtain:

-_ _ 602 : Wl + XlK~ei4 00ei 1 o

T - iP0 3 [ 1a8T o

+w2eiw2To + x ei 40 I e i4 Wi - 3w2)T0

2- +i(2 1-ck 2)TO + -2ei(3tk1 -2 t, 2)To] (3.20)

With the elimination of secular terms, the damping and phase differential equations for the variation of the modal

amplitudes take the form

i(P0 -2w,) d + iUlKl + iIA2K + xle 4 °K = 0 (3.21)

dK2

i(P0 - 2w 2) dK2 + iu1K2w 2 + iP2K 2 = 0 (3.22)

With secular terms eliminated, Equation (3.20) may now be solved for 3(T0 , T2) which is valid only at resonance

(p = w1 ) to yield

[V 3
in1 T 3 2 2 ei n2To 3K K2ein3To 1

(T0,T 2 ) (3.23)

I P0n + W2 n2 - P0n2 +0 n3 - P0 n3 + w2J

where

nl = 4w, - 3w2

n2 = 2w 1 - w2  (3.24)

n3 = 3w, - 2w 2

The complete solution j(T 0 , T2), valid at resonant spin, may now be written

2 le + EK2eWT j xe 4 L n2 - Pon, +w10

+ 2 P +R1~ 2 (3.25)
n2 - Pon 2 + 0  n Pon3 + 0
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Table 1. - Missile Aerodynamics and Configurational Characteristics

MACH NUMBER 0.78

FLIGHT ALTITUDE 6000 km

REFERENCE DIAMETER, d 27.3 cm

MASS, m 272.1 kgm

POLAR MOMENT OF INERTIA 2.7 kgm -
2

TRANSVERSE MOMENT OF INERTIA 54.5 kgm - m 2

AERODYNAMICS

CN. = 4.30 Cmq + CM. -50.0
=~ 

Cm .00CmC= -4.20 Cm 5.00

CN ,62 = 9.1 CQ = 0.20
0

Cm.,6 2 =-30.8 CQr7 4 
= 10.6

C2 = -2.0
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Several important comments regarding tile distinction between Equations (3.19) and (3.25) should be made.
While Equation (3.19) is valid for all spin except p = 0, 1 /2, wlI , Equation (3.25) is valid at p = wl only. For non-
resonant spin, the effect of the roll-dependent aerodynamics was not discernible. However, at resonance (p = WI),
the nutation amplitude may be strongly affected by X1 and 0." This characteristic of sensitivity of the stability of
the motion to initial conditions gives some insight into the mechanism of resonance-related instabilities whereby
the missile stability is dependent upon the amplitude as well as the initial phase of the motion.

The validity of Equation (3.25) was checked by comparison with direct solutions of Equation(3.1)at resonant
spin and the results of these calculations are shown in Figures 7 through 10 where two identical configurations are
released at slightly different initial conditions. Figure 8 is seen to depict stable motion while the motionof Figure 10
shows the configuration to be slightly unstable.

Additional insight into the sensitivity of the motion at resonant spin to variations in initial conditions may be
gained through a decomposition of Equation (3.21) and displaying the slowly varying dynamics of the two-
dimensional system in an amplitude-phase plane. Separating Equation (3.21) into real and imaginary parts, the
nutation mode behavior may be represented by

dkl /X 1

d) _ Al l + 2) kt - - k' Sin g0  
(3.26)dT2 \ P - col,} 0 -"'I

dOt _ _ 1__-k 21 Cos go 
(3.27)

dT2 Po - 2 l

10.0
- EXACT

Cn,2 = 9.4 * APPROXIMATE
Cm162 = -30.0

5.0

k = 0.044

-' k = 0.026

0.0- 460 0.0

-5.0

-10.0 -,

-10.0 -5.0 0.0 5.0 10.0

(vIV) (deg)

Figure 7. - Complex Angle of Attack History at Fundamental Resonance with
Nonlinear, Roll-Dependent Aerodynamics
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10.0
j5 =-EXACT

CN Yh = 94APPROXIMATE

50 Cm2 = - 30.0

0.0± rntjO.

kj5.0006

k-10.000

-10.0 -5.0 0.0 5.0 10.0

(vIV) (deg)

Figure 8. - issile Transient Response at Fundamental Resonance with

Nonlinear, Roll-Dependent Aerodynamics

W1-EXACT

CNjb2 9.4 APPROXIMATE

40.0 c M, = - 30.0

k = 0.044

30.0- k~o = 0.026

20.0

10.0

0.0-
0.0 2.0 4.0 6.0 8.0 10.0

TIME (sec)

F igure 9. - ComplexC Angle of Attack History at Fundamental Resonance with

Nonlinear, Roll-Dependent Aerodynamics



50.0

- EXACT

CN,2 = 9.4 *APPROXIMATE

40.0 C = -30.0

klo = 0.068

30.0-- k = 0.003

30.0

0.0 2.0 4.0 6.0 8.0 10.0
TIME (sec)

Figure 10. - Missile Transient Response at Fundamental Resonance with
Nonlinear, RoU-Dependent Aerodynamics

where

o = 4(00 - 01) (3.28)

Solutions to Equations (3.26) and (3.27) are shown as trajectories in the k, -0 plane of Figure 11. Initial condi-
tions leading to stable motion are seen to be those originating below the dashed line denoted as the separatrix. It is
now clear that the principal features determining the stability of the missile at resonance are the amplitude of the
nutation component kl, and the relative phase, 0.
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CHAPTER IV

INDUCED ROLLING MOTION WITH PRESCRIBED YAWING MOTION

In the previous chapter, attention was focused on the nonlinear yawing motion, while the rolling motion was
constrained at constant roll rate. While this can hardly be considered representative of free-flight conditions,
considerable insight was gained into the effect of the roll-dependent side moment on missile stability. In this
chapter, this phlosoptly is applied in a study of the induced rolling motion where a solution to the nonlinear roll
dynamics is sought while the yawing motion is constrained to be epicyclic.

A. NONRESONANT SOLUTIONS

The roll differential equation, Equation (2.29), which was previously derived in Chapter II to include the lowest-
order roll-dependent terms consistent with the Maple-Synge expansion, may be rewritten in slightly different form
with the introduction of the smallness parameter e. whose magnitude is of the order of the total angle of attack, as

d - 00 + 02p +a lm0 4e4

where

q0,Ad (4.1)

2 q Ad

e 2 0 qAd
2

Approximate solutions to Equation (4.1) are sought using the generalized version of the method of multiple scales.
If Equation (4.1) is considered in the absence of the induced roll term, the solution exhibits the usual slowly varying,exponential behavior of the roll rate. which is associated with the slow time scale T2 such that

d = E2 3 (4.2)dt aT 2

Inclusion of the induced roll term introduces a nonlinear forcing function whose excitation will be dependent upon
the amplitude and frequency of the assumed missile angular motion, t(t). If the familiar epicyclic motion of a
symmetric missile is assumed, it is evident that the resulting solution p(t) should contain components whose fre-
quencies are linear combinations of the epicyclic frequencies W, and w2. In view of this, it is assumed that 1(t) is
given by

2

R0t L Kje"i (4.3)
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where

dt

and the asymptotic expansion for p(t; e) is of the form

p(t;e) = p0(T2 ) + e2 p2( Il, L2 ,¢, T2) + -" (4.5)

Thus time derivatives of p(t) will be converted to partial derivatives with the independent variables V3, 4, and T2 .

Substitution of Equation (4.5) into Equation (4.1) while making use of Equations (4.2) and (4.4), and

equating all terms of order e2 results in the linear partial differential equation

P 2  p2  P2 4 m 4 ,-,)
+ + - = w3(T2) + a, lm[K e )

+K4ei4(P2-o) 3 i(3 '1 + 2-40)
2 + 4K1 K2 e

-,2K.2 2 "i(¢+ 2-2o)
+ 6 K I  2 e i ( 1 + 3 02  2 o )

+4K1 K3ei 40) (4.6)

where

dPo

w3 (T2) = dT + 02P 0 + 00 (4.7)
T2

and

K = kje i ~j  (4.8)

Particular solutions to Equation (4.6) become unbounded as Oi and € become large. Therefore, it is required that the

secular term w3 vanish, yielding the differential equation

dpo

dT2  0 + 02PO (4.9)

for the slowly varying spin. With the exclusion of the secular term, a particular solution to Equation (4.6) may

be found
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O 4  Ol 4

P2 (t) -4(Po-l) CI s4( I - 0) + 4 (P 0 o2 ) Cos 4( 2 -)

4Olk~~k2 3l2 2

+ 4a, kk2 1 + 2 -440) + 3akIk2 Cos 2(k 1 + L2 - 20)
4p 0 - 3w 1 - WJ2 2po - - W2

+ 4P0- - -3 2 Cos(f 1 
+ 31P 2 -'40) (4.10)

Solving Equation (4.7) for p0 (T2 ), the complete expansion for p(t), with induced rolling moment in the presence of
epicyclic yawing motion becomes

p(t;e) =P0(o)eO2T2 +.
° 0

e
o- 1)-2-

1 4  k Cs~~ 1 0

+,4k3k 2  A
+ 2 ) Cos 4(2-) + 3 1  2 Cos (3, + 02 - 40)4(P0 - w02) 4P0 - 3w,1 - wo2

3k2 2 4k 1 k ,

+ " Cos 2( 1 + -20) + C1s24P0 - (41 - 3w2 CosV+3 2-40) (4.11)

Inspection of Equation (4.11) again reveals the existence of discrete, singular roll rates at which the solution is no
longer valid. If the denominators of the e2 -ter m s of Equation (4.11) are allowed to vanish, considering only positive
values of P0, the three singular roll rates are identified as

P0 =

p0  (3w 1 + (J2 )/4 (4.12)

PO (cw1 + w2)/2

which are identical to the singular roll rates resulting from the case of constrained rolling motion of Chapter 1i1.
Since the functional forms of the induced yawing moment, and induced roll moment are quite similar, this result
is not surprising.

B. RESONANT SOLUTIONS

When the rolling velocity is in the vicinity of the above singular roll rates, additional resonant solutions must
be generated which are valid in the vicinity of these points. If Equation (4.6) is considered in the vi,;inity of funda-
mental resonance, and if the 4ij are interpreted as wiT0 , it is evident that the term a, K 4 exp I4i(4jl -0)] will be
stationary for perfect resonance, p = w 1 . For roll rates in the vicinity of resonance, pO w 1 , this term will, at
most, be a slowly varying function of time, T2 , and hence will give rise to secular terms in the expansion p(t).
Therefore, in order that the solution remain valid for large time, it is required that

dp°  4

dT + 02PO + o0 + alk, Sin 4(4,1 -0) = 0 (4.13)
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Equation (4.6) then becomes

aP2 + 2  - P2 im[K2ei 4 ( 2-) 4K3K 2 ei(3 +,i-40)

+6KK2e- 2i(,1-€,2-20) + 4KIK2ei(1€ j+3P2-40)1] (4.14)

which displays a particular solution valid at p0 = w:

0 4Olk3k2

21k4 Cos4(4 2 - 4-) + 4k _ Cos(3i 1 + i2 -40)P2(t) PO P- 2) 4P0 3w, w 2

3Ok2k2  4Ouklk3
+2p 0  1 1-02 Cos2( P1 +i 2 -20) + 2130Cos(, +3 2 -40) (4.15)

In like manner, approximate solutions which are valid at zero spin, p0  w 1 + w 2 , and one-half resonant spin,
Po = (3w + w 2)/4 may also be generated. For zero spin, the variation of the first-order solution p0 (t) is given by

dP0 2 2dT 2P0 + O + 2lklk2 Sin 2(i + I2 -20) (4.16)

while the second-order term in the expansion is found to be

4 l4

P2 (t) = 
4 (P0_ oi) Cos 4(i 1 - 0) + 4(P 0 - 2 ) Cos 4( 2 -0)

4alk3k2  4alklk3
+ Ip % Cos(3W 1 +0 2 -40) + Cos51 +32- 4) (4.17)4P0 - 3Ri1 - w02 40 - W° I 3w°2

Finally, the firt-order rolling motion at one-half resonant spin is governed by

dT2 -2PO + 0 +4kk 2 Sin(3 + 2 -4) (4.18)

and the second-order solution becomes

(Itki ___ ___
°tk4 °lk4j Cos 4(0 2 -

P2(t) - 4(P ) Cos4(j 1 - 0 + 4(P0 w) -)

3k2k22, 4102P0 -w1  2 +'2 + Cos(I +3 2-40) (4.19)

+ k k Cos 2(0i, + -20) + Co3w2 l+2 - w,- 224P0 - W01 - 3 w02

It should be emphasized that Equations (4.13) through (4.19) are valid for the discrete roll rates only.
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A direct comparison of the a pproximate solutions to Equation (4.1) using the method of multiple scales with
direct numerical solutions is complicated by the singular nature of the problem at the three discrete roll rates men-
tioned above. Typical roll rates of interest for operational air-launched ordnance range from zero spin to the onset
of Magnus instability which is usually several times resonance. Therefore a comparison of the approximate solutions
of this chapter with direct numerical integrations of Equation (4.1), over spin rates of interest will necessitate the
use of multiple resonant and nonresonant solutions which must be "matched" in an appropriate manner such that
continuous coverage of the roll spectrum is achieved.

In practice, this matching is achieved through the introduction of a detuning parameter X, which is used to
slightly detune the singular solution as the roll rate varies about the singular roll rate. For example, in the case of
fundamental resonance, the roll rate is detuned according to

p =W, + XC2  (4.20)

where v = 0(l). Substitution of Equation (4.20) into Equation (4.13) yields

dp0  4.12P ap+ 00 + a 0Sin 4(0 1 - 0 - XT 2 ) (.1

Thus, through the introduction of the parameter X, the "matched" asymptotic expansions of Equation (4.5) can be
used to describe the nonlinear rolling motion over the entire spectrum of roll frequencies.

Figures 12 through 18 display the missile induced rolling motion for yawing motion of various amplitudes.
Missile physical properties and aerodynamic characteristics used in the calculations were shown in Table 1. For the
purposes of these calculations, approximate solutions generated by the method of multiple scales, were matched
at points which were chosen to lie midway between resonant roll rates. While more elaborate methods may be
devised, the present method proved reasonably successful as evidenced by the agreement displayed in Figures 12
through 18 for a variety of initial conditions and design roll rates. These results display the dependence of the
roll rate history on initial conditions and angle of attack for a passage through resonance to the design roll rate
of 3w,. As the amplitude of the yawing motion increases, the rolling motion becomes dominated by the large
induced roll effects, and the validity of the perturbation analysis becomes questionable at angles of attack
in the neighborhood of 30 degrees. In addition, the inaccuracy of tlhe asymptotic expansion of Equation (4.5) for
large time, is evidenced by the growing phase difference )etween the approximate and exact solutions.

Missile roll behavior ir the vicinity of resonance may be demonstrated by an inspection of Equation (4.13)
together with an analysis of the following numerical results. Figures 19 through 21 show missile roll rate histories
passing from resonance (Pt) = w, ) to a design roll rate of 3w, , under the influence of progressively larger yawing
motion which is predominantly precessional. As predicted by Equation (65), the roll rate approaches its design
value with only minor variations even as the amplitude of the yawing motion approaches some 30 degrees.

Stability of the rolling motion at resonance is demonstrated by the results of Figures 22 through 27 where
the missile design roll rate was chosen as p,, = wl. The diminished influence of large amplitude prec;essional motion
is again displayed by the results of Figures 22 and 23 while Figures 25, 26, and 27 indicate the drastic change in
the character of the rolling motion under the influence of large-amplitude nutational motion.
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CHAPTER V

COMBINED ROLL-YAW INTERACTION

The results of the preceding chapters have been instrumental in providing quantitative insight into the
mechanisms of resonance instability as related to the effects of roll orientation-dependent aerodynamics. In addi-
tion, stability criteria useful to the designer have surfaced as a by-product of approximate solutions generated by
the perturbation methods. While the two specific conditions studied, i.e., free yaw with prescribed rolling
motion and induced rolling motion with prescribed yawing motion, have been instructive, neither can be considered
totally representative of free-flight conditions. In this chapter, approximate solutions are sought which are represen-
tative of the full nonlinear problem of combined roll-yaw interaction.

The simultaneous differential equations governing the combined roll-yaw problem may be taken directly from
Chapter III (Equation (3.1)) and Chapter IV (Equation (4.1))

iP0j - j0" = e2 l + ie2 M2 j + x182ei 4  (5.1)

and

p = e4(o0 + 02p) + lm(j 4 e- i40) (5.2)

Note that the smallness parameter e has been introduced into Equation (5.2) in a slightly different manner, such
that terms on the right-hand side are of equal order of magnitude.

Approximate solutions to the system of nonlinear Equations (5.1) and (5.2) are again sought using a generalized
version of the method of multiple scales similar to that of Chapter IV. It is assumed that and p possess uniformly
valid expansions of the form

(t; ) = ed'(('l, 4'2 ,T 2) + e3%3 (k! , 
2 ,0, T2) +

(5.3)
p(t;e) = P0(T4) + C4P4(01, V2,0, TO + -'

where

dt j, (5.4)

and

T eT0  (5.5)

The slow time scale T2 is chosen so as to characterize the slowly varying nature of the modal amplitudes while the
variable T4 is introduced into the roll expansion in order to accommodate the comparatively slow variation of spin
due to Cq . In addition, the assumed expansions of Equation (5.3) differ from previous expansions in that Z may
now exhibit roll dependence through the independent variable 0.
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Equations (5.3) may now be substituted into Equations (5.1) and (5.2) to obtain partial differential equations
in the independent variables 4j, Tj and 0. Equation (5.3) may be incorporated into Equation (5.2), equating all
terms of order e4 to obtain

1ap4  aP4  aP4  [ dpo 1W 1 
+ w° 2 3 +  P -IP4 + Go + 02P0 + UJim(-4 e-i4o) (5.6)

Equation (5.6) is identical to the roll partial differential equation which resulted from the analysis of Chapter IV
with the exception of the fact that "tj is no longer constrained to be epicyclic with constant amplitudes and fre-
quencies but may vary in accordance with Equation (5.1).

Equation (5.3) may be substituted into Equation (5.1) and terms of order e and e3 equated to obtain partial
differential equations for the solution of i 1 and 1.

Terms O(e):

S2(t) _ iPoy( 1 )-o 1 = 0 (5.7)

Terms 0( 3 ):

a
2

1  2 a
2 

1  dw, a 1  dw 2 ail

a JaT2  2 2 ab 2aT 2  dT2 aV. dT2 80 2

+iPo .2 + pA1!'(i 1 ) + 
i
u2 l + 1 1e (5.8)

where

Y = W, -_L + W02 (5.9)

and the epicyclic frequencies wj are taken to be functions of slow time T2 , to characterize the slow variation of the
wj with mach number, dynamic pressure, etc. Thus Equations (5.6) through (5.9) represent the governing equations

for t I, p 3, and P4"

A. NONRESONANT SOLUTIONS

The general solution to the homogeneous Equation (5.7) has the usual epicyclic form and may be written
directly as

2
= K,(T 2)ei (5.10)

j=1

where

Kj = kjeiei (5.11)

and

Oj = WjT 0  (5.12)
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Equation (5.10) may be substituted into Equation (5.8) to obtain the partial differential equation governing i3
resulting in

(i3)- iP0 Y(3)- 4% = w lei + w2e'i 2 + xI3 i(4o-30I) + K~ei0-34'2)

+3KfK2e(
4 o-2ol02) + 3k 1  ei(4vl202)] (5.13)

where
dAl dw, (5.14

wI = i(Po - 2w1) jT + i (11 + A2 - K (5.14)

and
dK2 ( dw,2

W2 = i(P 0 -2w 2 ) -2"2 + i (Ul2 + A2 -" ' K 2  (5.15)

In order to obtain a uniformly valid solution to Equation (5.13) that remains bounded as To -- , it is required that
the secular terms vanish (wI =w 2 = 0), which results in the differential equations characterizing the slowly
varying Kj's

+~ i dw,1
i(P0 - 2w,) ' - AM +  IA2 L - -2 K, =  0 (5.16)

dK2 ( dw2(

i(Po-2w2)"2"2 + At 2 Kd2 ) = 0. (5.17)

With these secular terms removed, the particular solution to Equation (5.13) becomes

i= al e i( 4 o- 3 ,P) + a2 e i (4 - 3*2) + a 3 ei(4 * - 2 1 - o2) + a4 e i ( 4 o - 4,1 - 2 02)  (5.18)

where

-xl I3
al 22

(4po- 3w 1 ) -P 0 (4p0 - 3wl 1) + o

-xik 3

a2  2 (5.19)

(4Po - 302) _P 0(4p 0 3W2) + (.9

- 3 XI IK 2

= (4Po 2w - )2 _ P0(4p0 - 2w,1 - w2) +

and

-3X KIK2
a4  = 2

(4po -w 1 - 2w 2) - Po(4po-wl - 2w 2) + wO
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Returning to the differential equation of rolling motion, Equation (5.10) may be substituted into Equation (5.6),
and again eliminating the secular term, the slow variation of po(T 4) is given by

dpo
dT 0 + 2PO 0 (5.20)

The particular solution to Equation (5.6), with the secular term removed, may then be written

P4 (t) = 01 Cos4(t - )+ 02 Cos4( 2 -) + 03 Cos(3$ 1 + 2 -40)

+04 Cos 2 (ipt +  2 - 20) + 0 5 Cos I$ + 3 2 - 40) (5.21)

with

4
=l 4(po0 -_ 1 )

* 4* aik 2
92 =- (5.22)4 (po - W2 )

401 k3k 2

3 = 4po 3w - W2

3alklk
2

1 2~o

4a1 k I k
3

= 
4 

-4p 1e -_3w 1

and

^j = wjT 0 + Oj (5.23)

Inspection of Equations (5.10) through (5.23), which constitute the first and second approximate solutions for p(t)
and (t), reveals that the full problem of combined roll-yaw interaction may be treated as a superposition of the
two previously treated problems, so long as the assumptions regarding the perturbation nature of the problem
remain valid.

B. RESONANT SOLUTIONS

Similar to the behavior investigated in Chapters III and IV, the higher-order approximate solutions for coupled
yawing and rolling motion, (13, p4), become singular as the roll rate approaches the distinct values of zero spin,
resonance (p = wl) and approximately one-half resonant spin. This difficulty is evidenced by the singular behavior
of the terms of Equations (5.19) and (5.22) as p0 approaches one of these critical roll rates. Further evidence may be
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obtained through an observation of the nonhomogeneous terms of Equations (5.6) and (5.13) as the roll rate
approaches the above critical values. Selected high frequency terms become stationary or, at best, are slowly varying
functions of time (T2 , T4 ), which give rise to secular terms in the expansions for p and ". Perturbation solutions
which are valid in the vicinity of these singular roll rates must be generated individually and these solutions
,.matched" to obtain continuous approximate representation of the motion. Sollutions valid in the vicinity of
resonance are generated in what follows. For the sake of brevity, derivation of solutions valid at Po = 0,
(3w 1 + o2 )/4 are omitted but may be easily derived in a manner similar to the case of resonant spin, p = w, .

At resonance, the Oj and 0 are interpreted as wjT 0 and p0 T0 respectively and Equation (5.13) may be
rewritten, grouping stationary terms, as

/2(t3) -iPp,) 3)_ 3 = [W1 + XlK1ei400] e'' l + w2 e'g2

+ X 3e i(4o-3k,2 ) + K 2e i(4o-4,l-2Pf2) +--2- i(40-2ffl-f02)]1(.4

1X[ike + 3 I + 3K1K 2 e 2 (5.24)

In order for the solution to Equation (5.24) to remain uniformly valid, it is required that the secular terms vanish

Wl + XI k]e i4 00 = 0 (5.25)

w 2 = 0 (5.26)

The solution of Equation (5.24), with secular terms removed, may now be obtained as:

t3(0 = a 2 e i(4o-31P2) + ao3e
i(4 o -2 

0,
-

,2) + a 4 ei(
4

o
- -2Y2) (5.27)

Thus the resulting asymptotic expansion for j(t), valid at fundamental resonance, is written as

t(t;e) = ftlI l, 2, T2) + E3 3( Il, 02, 0. T4) (5.28)

with i1 and 3 given by Equations (5.10) and (5.27) respectively.

The solution to the nonlinear rolling motion at resonance is generated by a consideration of Equation (5.6)
as p w, w. Grouping stationary (slowly varying) terms, Equation (5.6) may be expanded and rewritten as:

P4 aP P4  [ dpo +k4S4 _
o1  2 + 2 + PO - +  PO + 02PO + Sin4(0 00)

+ +Olk2 Sin 4 (2 - ) + 4k'k 2 Sin (3 1 + 4'2-40)

+6kIk2 Sin2(I + 2 -20)+4k 1k3 Sin(0 1 +302-40)] (5.29)

Elimination of the slowly-varying secular terms yields the governing equation for PO:

dP0  o+ U2 P+a l k
4 Sin 4 (01 - 0 ) (5.30)

dT 4
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The uniformly valid solution for P4 is then solved for directly and is found to be:

P4 (t) = 132 Cos4 (42 -0) + 03 Cos (3 1 + 02 -40)

+P4 Cos 2 (01 
+ 2 - 20) + 05 Cos (;PI + 3;k2 -4) (5.31)

C. STABILITY AT RESONANCE

Equations (5.27) through (5.31) comprise approximate solutions to the combined roll-yaw motion valid in
the vicinity of resonance. While these results contain considerable information regarding the character of the
coupled motion at resonance, they are nonlinear, time-varying, coupled differential equations that yield little quanti-
tative information without recourse to direct numerical integration. Additional insight into the stability of the
motion, in close proximity to resonant spin may be gained through a small perturbation analysis of Equations (5.27)
through (5.31).

Equation (5.25) may be expanded into real and imaginary components to yield the differential equations
governing the slowly varying nutation amplitude and phase

dk j _ 2 -(! I _lk, Sin 4( 0- 1) (5.32)

dT2  P0 - 2w , k P P0 - 2wi

dp0  Xlk 2

P0 - 2w Cos 4(0- 01) (5.33)

The governing differential equation of rolling motion at resonance is taken from Equation (5.30) as

dp0  o1 kl Sin 4(0-0E1 ) (5.34)
dT- 0 0 + °2Po +

An investigation of the combined rolling and yawing motion in the neighborhood of p0 = w I proceeds by consider-
ing the phase 0 - I to be essentially stationary, or at most a slowly varying function of T2 at resonance. Allowable
perturbations about resonance are made possible through the introduction of the detuning parameier X, such that

P0 = WI + C2? (5.35)

where X is of order unity. Substitution of Equation (5.35) into Equations (5.32) through (5.34), with the interpre-
tation of i0 1 as wI1T0 , yields the following nonlinear system

dk - + k

( A 1  Sin r (5.36)

dr 0 - 4Xl k2coC r (5.37)
dT2  P0 - 20 1

dX = 0 Sin r (5.38)
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where

r -= 4( 0 - 01 + XT2) (5.39)

and higher-order terms in e have been neglected. Implicit in Equation (5.39) is the fact that Po = w has been
selected as the steady-state condition.

Stability of the motion at resonance can be analyzed by a small perturbation analysis of Equations (5.36)
through (5.38) about the point (k0 , r 0 , 0) by introducing the perturbations

ki - ko k

r ro + 7 
(5.40)

and expanding about (kO, r O , 0) to yield the following perturbation equations

dk
d -- (n0 + 31?2 sin ro)k + (.02 ko Cos ro)j (5.41)

d- 4X - (87f2 Cos ro)k + (4n?2ko Sin 170)j (5.42)

dT2
0

d2 (4a, sin l'0)k + (a, k~cosr 0)j (5.43)

where

1 1 (P2 (5.44)

= - 1 (5.45)
P0 F - 2w,~

Stability of this linear dynamic system is governed by the characteristic equation

Det (sl -A) = 0 (5.46)

where

(i01 - 3 2 k2 Sin FO) -(17 2k3 Cosro) 0 1
A = -(817 2k0 Cos ro) (4112k2 Sin F0 ) 4 (5.47)

L 4alk Sin F0  (Ok 4 Cos 0 ) 0

The roots associated with the characteristic Equation (5.46) are shown graphically in Figures 28 through 32
for various values on nutation amplitude, k1. The root loci of Figures 28 through 31 indicate the possibility of
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only mild instabilities associated with these roots with increasing frequency as the nutation amplitude increases.
However, strongly divergent instabilities are possible due to a third real root, which may be large and positive.

The analytical results of Equation (5.46) were verified by direct numerical solutions of Equations (5.1) and
(5.2) with the results shown graphically in Figures 33 through 38. Mild instabilities about resonance are depicted
by the total angle of attack and roll rate histories in Figures 33 through 35 for various values of nutation amplitude.
As the amplitude of the motion is increased, the mild oscillatory behavior of the nutation arm becomes more
pronounced in agreement with the perturbation analysis.

The oscillatory behavior of the nutation amplitude associated with the solutions of Figures 33 through 35 is
shown in Figure 36. Frequencies characteristic of this behavior are seen to be in agreement with the root loci of
Figures 28 through 30. Note that the missile roll rate has departed significantly from its equilibrium value, p = WI
where the perturbation assumption is no longer valid. In Figure 37, the missile stability in the vicinity of resonant
spin is shown to be quite good for initial conditions producing small amplitude motion. In contrast, Figure 38
illustrates the sensitivity of the missile stability to small changes in initial conditions for large amplitudes motion.
Note that although both solutions of Figure 38 have identical initial conditions, with the exception of small
variations in l'0 , their angular motion and resultant spin rates are significantly different.

While not directly applicable to the small perturbation results, Figures 39 and 40 show total angle of attack
and roll rate histories for configurations with fin cant with a resulting design roll rate of 3w 1 . The results of
Figure 39 show stable missile angular motion when initial conditions are chosen in accordance with previous root
loci predicting stable motion (k, = 0.3, r. = 3.6). The steady-state roll rate is seen to exponentially approach its
design value with apparently little influence from the missile angular motion. However, when the initial phase angle
ro is chosen such that the dominant real root of the linear perturbed system is large and positive, the divergent
angular motion of Figure 40 is obtained together with a rapid divergence of the roll rate to a value well beyond
the intended design value of ps5 = 3w1 . The critical value of spin producing the onset of magnus instability for this
particular configuration was calculated to be (p/(wi)),,i = 11.0. The maximum roll rate produced by the resonance
instability was approximately (P/wl )Imax 9.2, justbelow that spin needed for magnus instability.

IM
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10

5-

Re

Figure 32. - Root Locus at Resonance. ko 0.436
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CHAPTER VI

SUMMARY AND CONCLUSIONS

The free-flight angular motion of a symmetric cruciform missile, in the presence of nonlinear-roll-orientation-
dependent aerodynamics has been treated in a manner amenable to deriving practical stability criteria. An aero-
dynamic force and moment system, consistent with arguments of rotational and reflectional symmetry, have been
incorporated into the equations of motion. The method of multiple scales has been employed to obtain approxi-
mate expressions prescribing the missiles angular motion for the following conditions:

I. Free-flight yawing motion in the presence of nonlinear-roll-orientation-dependent aerodynamics with
prescribed rolling motion

2. Free-flight rolling motion in the presence of linear damping and nonlinear induced roll moments

3. Aerodynamically coupled, free-flight yawing and rolling motion both away from, and in the neighborhood
of resonant spin.

For the case of free-flight yawing motion with a priori rolling motion, an application of the method of multiple
scales yields first-approximate solutions identical to those generated by the method of averaging. Critical roll rates
are identified, and solutions valid in the vicinity of resonance are derived. Approximate solutions show good
agreement with direct numerical solutions for moderate angles of attack and as such should provide useful stability
criteria.

Nonlinear rolling motion with prescribed yawing motion was analyzed using a generalized version of the
method of multiple scales. Singular roll rates of zero-spin, resonance, and one-half resonant spin were identified
and solutions valid in the neighborhood of these roll rates derived. Comparisons with direct numerical integrations
were accomplished by matching resonant and nonresonant solutions throughout the roll rate spectrum. Approxi-
mate solutions were shown to remain valid for moderate angles of attack below 30 degrees.

The complete problem of coupled nonlinear rolling and yawing motion was investigated and approximate
solutions describing the motion were found to be simultaneous solutions of the prescribed roll and yaw cases.
Solutions valid in the vicinity of resonance were derived and combined with small perturbation methods to derive
useful stability criteria.

The above analyses have clearly shown the existence of resonance instabilities due solely to the inherent lack
of complete axial symmetry introduced by the fin cruciform. Through the use of the derived approximate solutions,
stability criteria may be used to investigate the frequency of occurrence or susceptibility of candidate configurations
to resonance instabilities.
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V

APPENDIX

MAPLE-SYNGE THEORY

The essence of the Maple-Synge theory lies in its representation of the fluid forces and moments as power
series expansions in the cross velocity components and in its arguments of the symmetry of these forces and
moments under coordinate transformation.

For purposes ,f illustration, the derivation of the static forces and moments are considered here. For a more
complete treatment, the reader is referred to Reference 12.

The complex transverse force and moment coefficient expansions, by the "aerodynamic hypothesis," may be
written in the missile-fixed system in the complex angle of attack t, where

v + iw (A-)

as

(Cy + iCr) = Z Cij i ij (A-2)
i, I

and

(Cm + iCn) = Ckvtk (A-3)
k,Q

The scalar V is the magnitude of the total velocity and (-) denotes
complex conjugation. The coefficients Cij, Ck, are, in general, complex Zl y
and may also be functions of spin, Mach number and Reynolds number.

The consequences of tetragonal symmetry may be realized by a

consideration of the cross force and moment coefficient expansions in a
new coordinate syster- (x, y, z) obtained by a 900 rotation about the I
x-axis. The rotational symmetry of the missile requires that the force Z'Y1

and moment coefficients, as viewed in both systems must be related by Figre A-I

(Cy] + iCz 1) = i(Cy + iCz) (A-4)

(Cm +iCn ) = i(Cm + iCn) (A-5)

with

(A-6)

and

(A-7)

A-I
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Now assuming that the coefficients Cij and Ckt remain invariant, Equations (A-2) and (A-3) may be substituted
into Equations (A-4) and (A-5) to obtain

1 Cij( t l ) i(f,) = i L Cij~iJ (A-8)
ij i,j

.T Ck (l) k( a
)  i Y_ Ck~tk fQ (A-9)

k,t k,2

Since the power series of Equations (A-8) and (A-9) must be equal term-by-term, consideration of Equations (A-6)

and (A-7) requires that

i = (A-10)

and

i k-Q- 1  I (A-1ll)

or equivalently

i-j-I = k--l = 4N (A-12)

where N is an integer.

Therefore, the tetragonal symmetry requires that only those values of i, j, k, and 2, in compliance with Equa-
tion (A-12), may occur in the cross force and moment expansions.

Z2 The consequences of reflectional symmetry may be deduced by a

consideration of the form of Equations (A-2) and (A-3) in a coordinate
system, (x, Y2 , z2 ) obtained by reflection about the x-y plane. However,
this reflection has changed the right-handed coordinate system (x, y, z) to
a left-handed (x, Y2, z2 ) system. Thus, the moment coefficient (Cm2 + iCn2)

Y,Y2 must be redefined in the (x, Y2 , z2) system. Maple and Synge (A-2) adopt
the definition that a rotation is positive if it corresponds to a cyclical
rotation of the axes.

With this in mind, the force and moment expressions in the two
Z systems are related by

Figure A-2 (CY2 + iCr) = (Cy + iC z) (A. 13)

and

(Cm2 + iCn2) = (Cm + iCn) (A-14)

with

= (A-15)

A-2
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Substitution of Equations (A-2) and (A-3) into Equations (A-I 3) and (A-14) yields

1 Cij()ka) = L Cti(O) (A-1 6)
i'j i~j

C.kQ)k(2v= -2 mk'(j)k(t)l (A-1 7)

k,Q k,Q

Incorporation of Equation (A-I 5) leads to the conclusions

Ci= Cij (A-18)

and

Cmk= -Cmk (A-19)

Thus, reflectional symmetry requires the force coefficients Cij to be real and the moment coefficients, CmkQ to be
pure imaginaries.

In its most general form, then, the force and moment coefficient expansions for a symmetric cruciform
missile may be written

(Cy + iCz) = L CNj(t)J++ 4N(-)j (A-20)
N,j

(Cm + iCn) = L C mN ) ++4N() (A-21)
N,t

Expansions of Equations (A-20) and (A-21) for various values of N exhibit the form of'the roll-orientation-
dependent aerodynamics. For the case N = 0, Equations (A-20) and (A-21 ) yield

(CY + iCr)° = Coj62j (A-22)

(Cm + iCn) ° = C mo, O t (A-23)

where 62 = Since all the terms in the expansions of Equations (A-22) and (A-23) are collinear with t, it is clear
that the N = 0 terms are incapable of discerning the presence of the fins. However, consideration of the N = ±1
terms may be used to generate the roll orientation-dependent terms harmonic in 4-. For N = ±1 the force and
moment expansion becomes*

*Here the force coefficients (C's) have been replaced by the more conventional notation (CN's) with the subscript N denoting
normal force.
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+62 + CN 4 + .

(Cy + iCz)N=±1 [CNi,3 + CN_1,4 52 + CN- 1 1 84 + + [CN + 1 + ..)5 (A-24)

(Cm + iCn)N=±I = [Cm-1, 3 + Cm-1,462 + Cm-l' 0 + ]fl +[Cm +Cm 1 62 + Cm 1, 2 4 + .. (A25)

Equations (A-24) and (A-25) may be put in standard form if the force and moment vectors are transformed
to the nonrolling system through the transformations:

(Cy + iCZ) = e'i(Cy + iCz) (A-26)

(Cjj 1 + iC7i) = e i(CM + iCn) (A-27)

and

S= eiot (A-28)

with the result

(C + iCK)N=±I = [CN_ 1 ,3 + CN_ 1 ,3 + CN_1,462 + CN_,s 64 + ..]62e-i43'i

+[CNIo + CNI 1 6 2 
+ CNI,2 6 4 

+ ...]e64i4/ (A-29)

(C n +iCji)N=±I = [Cm-1 , 3 +Cm_ 1 ,4 6 2 +Cm_ 8s
4 + ..]62e-i4,q

+[Cml,o +Cm,16
2 +Cm 2 6' 4+ .. ]64ei4"7 (A-30)

where

=0 - (A-31)

Inspection of Equations (A-29) and (A-30) clearly reveals that the lowest-order terms capable of exhibiting roll
orientation-dependence are third order in S.

Combining the expansions for N = 0, 1, -1, static aerodynamic force, and moment coefficients to third order
in 6 may be obtained

(C-Y + iC'i) = [CNoo + CNo, 1 2 + CN , 62e - i4  + .] (A-32)

and
[ 2 C 62e - i4"-. 1 (-3

(CWi + iCi) =Cmoo + +CM0 I CM1, 3  e +A-33

Since all the Cmii's are pure imaginary, Equations (A-32) and (A-33) may be written in the more conventional
aerodynamic notation:

(C' + iC-)0 [CN °  +CN 2 + CNy6262e-i4y +... (A-34)

(Cff +iCi) = i[Cm0 +Cma262 +Cmf62 82e-i4y+ ... ] (A-35)
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Static aerodynamic expansions associated with the missile rolling motion may be derived using the same
arguments of symmetry as in the case of missile transverse aerodynamics. The static roll moment coefficient, C , is
assumed to have a similar power series representation:

CV/= Cijt i T (A-36)

ij

where the Cij are real. Following Maple-Synge symmetry arguments, if CV is viewed in the coordination system of
Figure A-I, Cq must remain invariant, or

CQ = C21. (A-37)

Equation (A-37) may be expanded through the use of Equations (A-6), (A-7), and (A-36) to obtain

SCk ) = CI)(i)-l(CU ) a " (A-38)

kQ kt kt

Since the two series must be equal term by term, it is required that

ik-t = 1 (A-39)

or equivalently

k - Q = 4N N = 0, ±1, ±2, ---. (A-40)

Thus the roll moment coefficient expansion must take the form

C= T CNI(t)I+4N(f)' N = 0, +1, +2, -- (A-41)
N,t

Now Equation (A-41) may be rewritten in the slightly different form

C= =  {[ CN 2Q }4N. (A-42)
-N =

where 62 = t. Now the terms with index N = 0 may be extracted from the summation to yield

= Q C0 26 2 Q + 62, [C~2 t4 N + C-N2 t 4N], (A-43)
t=O NI t=0

which is a statement of the linear superposition of the static roll driving terms, which are functions of yaw amplitude
only, and the induced roll terms which are functions of t and its conjugate.

Expressing the complex angle of attack in the missile fixed system as 6e"', the roll moment coefficient
expansion may be written

C, ' CO'2 + 64 22Q{CN~e ANy + C-NeCi4NY} (A-44)
t=0 N=I t0
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Since C2 must remain a real quantity the condition

C2 = Q (A-45)

may be imposed and the two resulting infinite series equated term by term with the results

C02  C e- 02  (A46)

and

CNQ - C-NQ (A-47)

Incorporating Equations (A.46) and (A-47) into Equation (A-44) letting CNQ = DNQei 4o, the roll moment coefficient
expansion yields:

CQ COQ C 2 Q + 64N~ [2 62QDN Cos 4(0 + Ny)1 (A-48)
2=0 N=1 Lt=OJ

where 3 is a constant angle related to the orientation of the fin cruciform in the missile-fixed coordinate system. If
the cruciform is oriented coincident with the y-z axes (as is often the case) symmetry considerations require that
the induced roll moment vanish at y = 0, ir/2, etc., therefore

( = irt/8 (A-49)

Thus the final form of the Maple-Synge static roll moment coefficient expansion takes the form

CQ = C0 e 2 + 64N 62QBNQ Sin 4N, (A-50)
2=0 N=1 2=0

The lowest-order terms in the expansion may be generated by a consideration of the terms associated with
Q = 0, 1 to obtain

C2 = Coo + C0162 + ... + B1064 Sin 4'y + Bl 166 Sin 4y + B20 5
8 Sin 8y + B21

10 Sin 8y + ... (A-SI)

or written in more conventional aerodynamic notation

CQ
= C9 0+ C952 2 + ... + C £&64 Sin 4, + C2 8666 Sin 4y

+C2Q 858 Sin 87y + C2 Yo610 Sin 8y + (A-52)
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